
Problems for Section 4.1

In Problems 1–4, indicate all critical points of the function f. How many critical points are there? Identify each critical point as a local maximum, a local minimum, or neither.

1. $\int f(x)$

- 5. (a) Graph a function with two local minima and one local maximum.
 - (b) Graph a function with two critical points. One of these critical points should be a local minimum, and the other should be neither a local maximum nor a local minimum.
- 17. On the graph of f' in Figure 4.14, indicate the x-values that are critical points of the function f itself. Are they local maxima, local minima, or neither?

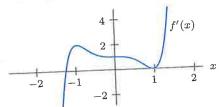
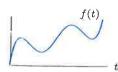


Figure 4.14: Graph of f' (not f)

19. If U and V are positive constants, find all critical points of

$$F(t) = Ue^t + Ve^{-t}.$$


- 23. Find and classify the critical points of $f(x) = x^3(1-x)^4$ as local maxima and minima.
- 31. Find the value of a so that the function $f(x) = xe^{ax}$ has a critical point at x = 3.
- **35.** If a and b are nonzero constants, find the domain and all critical points of

$$f(x) = \frac{ax^2}{x - b}.$$

Problems for Section 4.2

In Problems 1–4, indicate the approximate locations of all inflection points. How many inflection points are there?

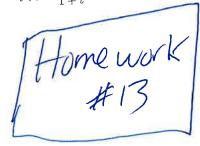
1.

21. Find the inflection points of $f(x) = x^4 + x^3 - 3x^2 + 2$.

Problems for Section 4.3

For the functions in Problems 18-22, do the following:

- (a) Find f' and f''.
- (b) Find the critical points of f.
- (c) Find any inflection points of f.
- (d) Evaluate f at its critical points and at the endpoints of the given interval. Identify local and global maxima and minima of f in the interval.

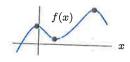

19.
$$f(x) = 2x^3 - 9x^2 + 12x + 1 \ (-0.5 \le x \le 3)$$

In Problems 23–28, find the exact global maximum and minimum values of the function. The domain is all real numbers unless otherwise specified.

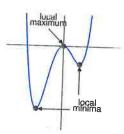
23.
$$g(x) = 4x - x^2 - 5$$

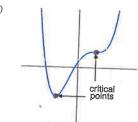
25.
$$q(t) = te^{-t}$$
 for $t > 0$

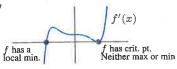
27.
$$f(t) = \frac{t}{1+t^2}$$



Section 4.1


1 One

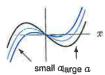

3 Three


5 (a)

·(b)

17

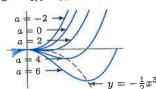
$$19~t=0.5\ln(V/U)$$


21 (a)
$$x \approx 2.5$$
 (or any $2 < x < 3$)
 $x \approx 6.5$ (or any $6 < x < 7$)
 $x \approx 9.5$ (or any $9 < x < 10$)

(h)
$$x \approx 2.5$$
; local max;
 $x \approx 6.5$; local min;
 $x \approx 9.5$; local max

23
$$x = 0$$
: not max/min $x = 3/7$: local

$$x = 3/7$$
: local max $x = 1$: local min

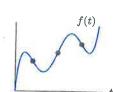

25 (a)

(b) 2 critical points move farther from origin

(c)
$$x = \pm \sqrt{a/3}$$

27
$$a = -6$$
; $b = 14$

31
$$a = -1/3$$


33 (a)
$$x = 0, \underline{x} = a^2/4$$

(b)
$$a = \sqrt{20}$$
; Local minimum

35 Domain: All real numbers except
$$x = b$$
;
Critical points: $x = 0$, $x = 2b$

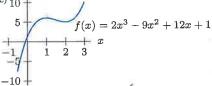
Section 4.2

1 Three

3 Опе

21
$$x = -1, 1/2$$

Section 4.3


19 (a)
$$f'(x) = 6x^2 - 18x + 12$$
,
 $f''(x) = 12x - 18$.
(b) $x = 1, 2$

(b)
$$x = 1, 2$$

(c)
$$x = 3/2$$

(d) Local minimum:
$$x = 2$$

Local maximum: $x = 1$
Global minimum: $x = -0.5$
Global maximum: $x = 3$

23 Global max =
$$-1$$
 at $x = 2$
No global min

No global max =
$$1/e$$
 at $t = 1$
No global min

No global min

27 Global max =
$$1/2$$
 at $t = 1$
Global min = $-1/2$ at $t = -1$

Solutions